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Summary:

For multivariate distributions with finite second order moments, a
nonparametric symmetric, unbiased estimator of the generalized wvariance is
considered, and it is shown to be (nonparametric) optimal for the class of
distributions having finite fourth order moments. A jackknifed version of the
sample generalized variance is also considered as a contender; it is
computationally more convenient and asymptotically equivalent to the former.
It is also shown that the second estimator performs quite well (in large
sample) relative/ to the optimal normal theory estimators under several loss
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1. INTRODUCTION

Let x,,...,Xxp; be n independent and identically distributed random vectors
(i.i.d.r.v.) with a distribution function (d.f.) F defined on the p(21-)
dimensional Euclidean space EP. We assume that F ¢ 7 = (F: ”xﬂ’dF(x) <4 o},

The parameter of interest (8) is the generalized variance |Z|, where

T = EF{(x - Ex)(x - Ex)’} and ll stands fof the determinant. A good amount of
work has been done on the estimation of 8 when F is assumed to be a
multinormal d.f.; the approach has mainly been decision theoretic and the main

result states that the best multiple of the sample generalized variance can be

improved on (in terms of risk) by using testimators [c.f. Stein (1964),
Shorrock and Zidek (1976), Sinha (1976), Sinha and Ghosh (1986), and others],

although the amoung of improvement is marginal in most cases.

An alternative honparametric approach to the estimation of € is
considered here. In Section 2, a symmetric, unbiased nonparametric estimator
is derived and its optimality is established through the use of Hoeffding’s
(1948) U-statistics theory. A second estimator based on jackknifing on the
sample generalized variance is found to be computationally more convenient
and asymptotically equivalent to the former nonparametric estimator of @, Like
the other (improved) parametric estimators, the second nonparametric estimator
also comes out as a multiple of the sample generalized variance, and it
performs quite well (at least, for large samples) compared to the optimal
normal theory estimators under several loss functions (vide Section 3). Thus,
the Jjackknifed estimator seems to enjoy the parametric affinity and
nonparametric robustness in broad setup. The former nonparametric estimator
is, however, somewhat computationally involved (particularly, for large n).
Finally, in Section 4, some concluding remarks about estimation of 'Zl‘/p are

made.

2. MAIN RESULTS

Let x,,...,x;; be n independent and identicallv distributed (i.i.d.) random

vectors (r.v.) with a distribution function (d.f.) F, defined on EP, for some
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p > 1. It is assumed that

Fe?={(F J Ixi°dF(x) < =}, (2.1)

where [l stands for the Euclidean norm. Our goal is to estimate the

functional (the generalized variance)

o(F) = [L(P)| = IE {(x ~ Ex)(x - Ex) "}, (2.2)

where IAI stands for the determinant of the matrix A. Note that when F is a

multinormal d.f. with unknown mean vector p and dispersion matrix [, then

8(F) = |F| is typically estimated by 6n = |Sn|, where
_ _ -1 on = T = _ 1 an
Sn = (n 1) Zizn(xi xn)(xi xn) and X = Eizn (2.3)

To motivate a nonparametric estimator of 8(F), first, we may note that

I = EFoo(xl,xz), v F & 7, (2.4)
where

¢ (% ,x ) = 1 (x - x)(x -x) v x ,x & EF (2.5)

o 172 2 "1 2 1 a’ ? 1’72 : *
Further, we may note that

ni—i

= v . .
(5] BIPRNCEREL FREEE (2.6)

Thus, S, is an optimal (symmetric, unbiased and minimum risk) nonparametric
estimator of I(F), F ¢ . However, 8(F) is a polynomial function (of degree p)
in the elements of ¥(F), and hence, it is easy to show that ISnI 6n is not
unbiased for €(F), although, the bias of én is typically of the order n~!'. Our
first goal is to consider a symmetric and unbiased nonparametric estimator of

8(F).

Let xj = (x,j,...,xpj). j = 1,..,2p be 2p vectors and define

1 1, -
= Mx =x Y, ..., 50X - X )|.
11 12 1 2 2 273 24 3 4 - pZ‘)"l

Note that for the matrix (of order p x p) in the determinant in (2.7), the jth

. - x $ .
o, -L‘h__\'\.\.b.\-i. "."‘ *m
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column depends only on X

, xzj' for j = 1,...,p. Thus, for ‘t(xl,...,x2 )
the p columns of this matrix are stochastically independent. Hence, using the

standard expansion for the determinant, it readily follows that

EFo(xl,...,xzp) = l”,*""“pl = P = oF), v F:3# (2.8)

where oj =9 . )’ stands for the Jjth column vector of L(F), for

o .
pPJ
J=1,...,p. Thus, o(x‘,...,xzp) is a kernel of degree 2p (although, it is

013"'

not a symmetric one), and, hence, following the steps in Hoeffing (1948), a

symmetric, unbiased estimator of 8(F) is obtained {(for n » 2p) as

u = P ek k), (2.9)
n 161 *,, .3 £n 1 1,
1 2p P
where
¢ - o] —
nt?Pl - 2p + 1y on PP o (P (2.10)

Being a U-statistic, Uy, shares the nonparametric unbiasedness and
optimality (minimum variance/minimum risk with convex loss functions)
properties when F is allowed to vary over a subclass of ¥ for which the
variance or the risk of Up is properly defined (viz.,, F ¢ #*, where

#* = (F: fllxl]"dF(x) < »), Up is a symmetric function of x,,...,xn.

It is interesting to note that for p > 1, U, = ISnI = én, and
moreover, unlike 61’11 Up is not a sole function of the elements of Sp.
Thus, in the normal theory case (for F), whereas it is possible to choose a
positive constant cp,p (depending on n and p (n > p)), such that cn'pén is
unbiased for 6(F) (and a symmetric function of the sample observations
too), Cn,pan may not be unbiased for 8(F) when F is not normal and p 2 2.
On the other hand, the proposed nonparametric estimator Up in (2.9), for p
d 2, involves the matrix S, as well as some other statistics (having smaller

contributions). To make this point clear, consider the simplest case of p =
2. We have then

"

-1 a
L

U =n PIX;: X; X3 X3 ) 2.11
n 154 =.?.=i en b7 ( )
1 4
_ _.nmn-1; =
T in-2)(n-3; |Snl n 3 Rn
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o where
+SE
S ’9’3] -
= : (X, ,%.,%.,%,) 2.
:' Rn n 1512§Ik5n0 Hipp XX ¥y, (2.12)
; (X . = x. )0 (x . - x ) - '
:ﬁ 1 n_rq} Xyi YxJ xl] Ylk (X21 Y2k
\:‘ 4 1.‘.12J:kén 2
e ( - - Yy ( - )
Al X » ) (x ' x X,k
o 1 1] 21 2j 21 2
L Note that Rn is not a sole function of Sn' A very similar treatment holds
.:‘;.‘_ for general p 2 2, Whereas for ElSnl, we need that EFllxﬂzp < o, for
:.; E Up(=8(F)), the second moment suffices.
-,
. Il
To explore the relationship between U, and én, we note that the von
." ,
[-. Mises (1947) functional corresponding to the kernel in (2.7) is given by
:': = {
L vo=d.. e SERRRYE UL LINC SDRTRY:| NE (2.13)
3 —2 n n .
‘\ = n p.Z..._E (x. , X, ),
N =1 i =1 ll l2
e 1 2p P
* where Fn(x) =n ' Zrille(xi £ X), X ¢ EP is the sample d.f. Using the
o identity that
{' ToY ) ( )’ =2n 7§ X ) x_ )’ (2.14)
x. - x)(x., - %, = 2n X, ~ X Y (x, - x .
,\i': j=1 y=1 1 J 1 J iZy 1 n ‘ i n °
*
i‘_‘ we immediately obtain from (2.7) and (2.13) that
u
! n—l)p -1,p-
= |=—= = - e - .
Vo= [B2)Plsn) = (1 - nTHPE (2.15)
.\J
ﬂ{d Further, {Sn,n > p} is a reversed martingale, so that noting that |Sn|
,r__t is a convex function of Sp, we claim that
.~‘
4 g™ ~
] {Gn, n *p+ 1} is a nonnegative reversed sub-martingale. (2.16)
Ney
'5.\: As such, using the reversed submartingale convergence theorem, we
. ~
:-:’_ immediately conclude that 8, = IZ(F)I = 8(F) a.s., as n =2 =, and hence
o
Ay . -1
~u = 'Vn - Gnl =0(n ) a.s., as n 2 « (2.17)
'_:::: On the other hand, if we assume that
'\-':‘ " . : © ; £ i i - £ ] = ! 2
._:_: I‘,Fcnxi ,....xi A L L Izp Ip, (2.18)
L:JH 1 2p
‘
=
o
l:'\
\
syl
%
&Y
04
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: ~ then using the results in Section 3.2 [viz. (3.2.9)] of Sen (1981}, it follows that
B o
W] lu - v | =0 as., asn>o. (2.19)
O Combining (2.17) and (2.19), we obtain that under [2.18),
,)-"'
,&4 ~ -1
Lo |U -8 l =0(n ) a.s., as n 2 =, (2.20)
yf'\- n n
Ho:
) Also, by the reversed martingale property of U-statistics, we conclude that
A
HE,
'1" {Un, n 2 2p} is a reversed martingale. (2.21)
AN
'2 Thus, writing 8 =U + (5 - U ), we conclude that U represents the
ey n n n n’’ n
* reversed martingale component of Gn, while the sub-martingale component
A (5n - Un) is 0(n_l) a.s. This can be interpreted as the asymptotic optimality
,:,:'-‘:: robustness of én(=|8n|) for estimating 6(F), for possibly non-normal F. This
" N
*::; decomposition along with (2.20) may also be utilized in the motivation of a
g -
- - jackknifed version of 8,, which would reduce the bias without compromising
o the (first order) asymptotic ortimality.
25
:li; To pose this jackknifed version (5}'{) of 6n, we define
g (i _ -1 0 —(i) =(i), >
Sn~1 = (n-1) agl(rxzi)(xa - xn__l)(xa - xn_l) . (2.22)
."-
=(1i) -1 0 .
N X = (n - 1) ) x, fori=1,...,n (2.23)
- n- aZ1 (azi) o
AT ‘( . _ . .
2D 61y = s for i = 1,...,n (2.24)
1
gy . _oa _qaali) .
_‘:r: en,i = nen (n 1>9n—1’ i=1,...,n. (2.25)
oY
! s Then
. - - n . - — n a ~ {1
N X =n' To =8 +8L § 5 501y (2.26)
! iz D1 n n j= n n-1
ﬁﬁ
:.' Using the results in Sen (1977), it readily follows that
) . _
- E (6% - 8(F)) = ofn ). (2.27)
Aoty
‘é: We may consider Gé as a competing nonparametric estimator of 4(I°).
"
vy
e
o
2
222
]
X
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r'
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s

R R Ay O S At S BNl S P

C et N vw .o - », . . . ~ v " . - T R R
| \ ; WA L B M, s - '. '\.{\‘_.*.". ‘J‘.‘ \"-',,. -‘.\ \ ., \"b Ny - N
Ot O LA e e Uy LR A D Ll o o Oy L natk {!"lnl."’l. T T A i R R o T R A e A T ! T e




x: ‘‘‘‘‘‘
B
")

, 7

9

l

"
.S

G
v Note that by definition
o
) (n-1)S_ = (n~ 2)5(“’ + 2 x -x ) (x. - x . (2.28)
- n n—1 n n’ “n n
= so that
-
- (n) _yn-1 _ n_ C -2

b IS ‘ - In—2 Sn (n—l)(n~2)(‘xn xn)('xn xn) ' (2.29)
]

N = @ALPs oD SRk - x|

N n-2 n (n-1)%2 ""n n’*"n
-.
N n-1.p - 1 -
) = — _ _
(. (=) lsnl{l T (x = x)'S "(x - x)
= Thus, if we define
{.-

','.“ a . = (x. -—x)’S—‘(,x. -x), 1=1,...,n (2.30)
. ni i n “n i n
f‘
" {and note that

o n n -, - -

- Ta .= T (x. -x)S8S (x. —x)

“. 1= N1 1=1 1 n n 1 n

= -n - _

- =Tr(S L (x. - x Yx. - x))

n i n i n

1=1

L = (n - 1)p,

5-:: for every n 2 2), we obtain from (2.26) and (2.29)-(2.31) that
f::' —*:—_n—ln ~1p8 ~ n \ “1ve
) Bn en - 1zx(n o) n 1 1)’ a b (n-1" n (2.32)
W p+1

:"' - 8 X - .(.Di)_. n - n 3 - 1

o i en‘l n(n-2)P ig,(l (n-1)2 pit *m L

) p+1

) _ o (n-1) lp

= =il (n2)p+p( 2') *a-

N ~ (n-1)P (n-1-p)

2. = n -
[ ®n'h (n-2)P }

= i p-1t

» - {n-1) in-1-p).
i = en{l + (n - 131 - FNCEY i

o -8 i1+ (n- n:1-p o1 -pl
.- -9n=1 {(n-1)[1 5 1 -

::: - c'r‘;‘p én, say.
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:::.: Note that for p = 1, cﬁ,, = 1 while for p = 2, (*,*,'p Sl SJ;: E 0n’

'::;:: Thus we have
° léé - :’nl = 0in a.s., as n = o, (2.33)

S

s R . . . - - :

':_-.;' This jackknifed estimator (Br‘;) belongs to the class {rn pvn} of adjusted

S, ’
:::' estimators which have been studied extensively by Sinha and others ({1}, [3],
,‘-. . - . . . .
i (6]). It may be of interest to compare this jackknifed estimator with somc of
e the other ones (in terms of the (asymptotic) mean squares) when F is normal,
:::::: This will cast light on the (near) optimalityv of Bﬁ for normal F. Details appear
-~
:-'\‘: in Section 3.
::{;

~ Recall that by (2.25), (2.26) and (2.29),

s

EE R - aiin n . i
5 - 8x=omnelt oL a0 (2.34)

o n,i n-1 n j=, n-1

- . n .
e -~ *(l"l_].\ (—-;p (en 11 -~ ___.r_]___; l Z (1 _ __r,‘_z a

[ ] —< ‘n-1) ni n = n- 1 nj

by . n n-lp o . 1 ,
) " n- (n~2\ (6n “hi T in=lipr,o= 0L P

Therefore, we have

( n . )
A _1- 2 8 . 91}‘;)2
= n-1 iZy n,i
: 1 n 1
n n-1 2p,~ 2 n- 2
-, Prag? T oqa -y
v n-1) n--2 iZ: ni n
v 2D 2
n(n-1°F - 2 ] n n-1 2
b ot it T oda . - == py!
{n-2)%P n-1 ;%, "ni n
2 ap—2
n'in-1,°F -~ 2.1 n 2 2 in-1
=TT TovEip T 'Yt 0T I s -p -
‘n-2) n-1 1=, ni n
- 2 1 n , . -
= 8 i = a e i Oin ;
n n_l 131 ni p M

(2.32) and (2.35) can be used to construct an asvmptotic nonparametric

confidence interval for 8(F).
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3. COMPARISON WITH OPTIMAL NORMAL THEORY ESTIMATORS

.‘u
<
AAA

When F is normal, best estimators of || of the form Cn,p 8, are known

".'a.'_ for wvarious loss functions. For example, the optimum choice of cy p I8
l.\- ]

}_‘-j (n-p)(n-1)P/n! = 1 + p(p-3)/2n + 0 (n~2%) for each of the three losses:

“ad . N N R X

Ny L.zl tzh = dzl - 1zhz, Lozl fzh = dElzizl- 12 and La(lE], 12D =
‘j dilzh - mdglzdzsh - 1 The risk of cpp 8, under L,(*) is easily
s

i computed as

:,_\-y.

oy

Lo r _ 2 _ .8 -3V / - 2 ) 2 J /2

"(Cn.p 1) Cn‘pP(P 3V /n + Cn,p p(p-1)/n + cn,pwbl(p,/n + Cn,pyz(p)’n

\:‘:-.3 + o(n_z;]-l212

'L':'s"

Y , \ P . . opt.=

B\ e where vop and v, (p) depend on p. Comparing the rises of <L b 8, and

A ’

P ¥ g

i Cn’p n» one gets

'\'.: ) ) 32_2_ -2, 2

e |risk difference under L,(-)| = | *— + o(n 1lZ| (3.2)

n

: The result under L,(+) is obtained from (3.2) by dropping the term |%|?. For
(_ ' the loss function L,(*), the risk of cn'pén is obtained as

e , ‘ 2

f?i: Ca,p' L T PPTLI2M) —dnc e, (¥ (R Y (pyn) +ooln ) (3.3)

‘el

R~ where v,{p) depends on p and ¥,(p,n) depends on both p and n. A

Ui

. . t. - ‘% . . .
comparison of the risks of cgp 6 and 8% immediately gives

Sy
4
“

-
l'"
[

Irisk difference under I.,(-)l = p2/2n2 + o(n—z). (3.4)

1200

"D

l,_ "‘n

It follows from (3.2) and (3.4) that éfl performs quite well for normal F even

SRR
e

for moderate values of p.

o It is clear from (2.9) that the genuine nonparametric unbiased estimator
A Unp of 6(F) is somewhat difficult for computation. However, the other
e competing asymptotically unbiased (up to o{n~')) nonparametric estimator 5,’{ is

casy to work with.
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27 4. CONCLUDING REMARKS

.:'- [t is interesting to point out what happens if we consider the problem of
AR A . . 1op . . o
N estimation of |Z! f - 8 (say) under the nonparametric setup. First, 1t is
'-:“-':

clear that, unlike in the previous problem, here a kernel which can be used to

construct an unbiased, symmetric, nonparametric estimator of 8 is not

#

-,f:)'

._r.:- available. This observation automatically justifies the obvious utility of

:::.‘ Jjackknifed estimatars. Second, one may proceed to work with the jackknifed

Lo version of én = L'nl P where Up is the syvmmetric, unbiased estimator of | T
defined in (2.9). Various asymptotic properties of this nonparametric estimator

J L are readily availiable in the form of egeneral functions of U-statistics

. contalning lfr,‘ Pas a spectial case' in Sen ¢19775, Section 3. Third, 1t is

also possible to use the jackknifed version of the parametric estimator

,.3 ISnI‘ P Using the relations (2.29)-(2.31), it is easy to verify that this

_. version results in !Snll P jtself at least for large n. Finally,

':-::: we note that, computationally |Sn| 1P much simpler than the jackknifed

o

. A
version of Up P,
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